BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 45, 925—926(1972)

1,2,3-Benzotriazole Complexes of Palladium(II)

Yoshihisa Watanabe, Take-aki Mitsudo, Masato Tanaka, Kazuo Yamamoto, and Yoshinobu Takegami

Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto (Received February 19, 1971)

1,2,3-Benzotriazoles are known to decompose thermally and photochemically to give biradicals, with an accompanying evolution of nitrogen.¹⁾ We attempted to prepare 1,2,3-benzotriazole complexes of transition metals²⁾ and to compare the complexes with free compounds. This note will describe how the reaction of 1*H*-, 1-benzyl-, and 1-vinyl-1,2,3-benzotriazoles with dichlorobis(benzonitrile)palladium(II) and di- π -allyl- μ , μ '-dichlorodipalladium(II) gives benzotriazole complexes of palladium(II). The pyrolysis and the photolysis of these complexes will bediscussed later.

1H-1,2,3-Benzotriazole readily reacts with dichlorobis(benzonitrile)palladium(II) in benzene at room temperature to give a yellow complex of the PdCl₂(1H-1,2,3-benzotriazole)₂ type almost quantitatively. The infrared spectrum of this complex has a very strong band at 3200 cm⁻¹, indicating that the >N-H group remains in the complex and that some of the nitrogen atoms in the benzotriazole act as donors. 1-Benzyland 1-vinyl-1,2,3-benzotriazoles react similarly with dichlorobis(benzonitrile)palladium(II) to give complexes of the PdCl₂(benzotriazole)₂ type. These complexes are also formed from palladium(II) chloride and the benzotriazoles in ethanol, but those reactions proceed very slowly.

The benzotriazoles react with di- π -allyl- μ , μ' -dichlorodipalladium(II) in benzene at room temperature to give white or yellow complexes of the $(\pi$ -allyl)PdCl(benzotriazole) type. The PMR spectra of these complexes indicate that the allyl group gives a signal of the A₂B₂X type in CDCl₃ and of the AX₄ type in dimethyl sulfoxide (DMSO- d_6), and that the chemical shifts and the coupling constants of protons of methylene and the vinyl group are similar to those of the free corresponding benzotriazoles. In DMSO- d_6 , the PMR spectra of the allyl groups depend on the temperature (20-70°C). Over 40°C all four terminal protons are equivalent (AX₄, τ 6.2 ppm doublet, 4.2 ppm quintet); this is best described in terms of a rapid dynamic equilibrium between the two possible σ -bonded forms.³⁾ However, at 20°C, the signal at the higher field appears as a

$$\begin{bmatrix}
N \\
N \\
H
\end{bmatrix}
 + HgX_2 \longrightarrow
\begin{bmatrix}
N \\
N \\
HgX
\end{bmatrix}
 \cdot HCI$$

 $X = O_2CCH_3$ and Cl

broad singlet, suggesting that the dynamic equilibrium may be affected by the temperature. The fact that the PMR signals of the 1-methylene and 1-vinyl group in the 1-benzyl- and 1-vinyl-benzotriazoles are not affected by the complex formation strongly suggests that the nitrogen atom at the 2 or 3-position of the benzotriazoles acts as the donor in the complexes.

Experimental4)

All the reactions were carried out in an argon atmosphere. The products, benzotriazole complexes of Pd(II), were stable in air in the solid state.

Dichlorobis (1H-1,2,3-benzotriazole) palladium (II). Into 380 mg of dichloro bis (benzonitrile) palladium (II) in 10 ml of benzene, we stirred 240 mg of 1H-1,2,3-benzotriazole at room temperature. A yellow substance (340 mg) precipitated out in a few minutes; this was filtered off and washed several times with benzene; mp>290°C; insoluble in benzene, ethanol, water, chloroform, and acetone, but slightly soluble in DMSO and N,N-dimethylformamide (DMF).

Found: C, 35.10; H, 2.55; N, 19.95; Cl, 16.80; Pd, 24.80%. Calcd for $C_{12}H_{10}N_6Cl_2Pd$: C, 34.68; H, 2.43; N, 20.23; Cl, 17.06; Pd, 25.60%.

IR (KBr): 3200 (very strong, broad), 1620(m), 1605(m), 1505(m), 1455(m), 1425(w), 1405(m), 1305(m), 1235(s), 1125-(m), 1050(s), 915(m), 780(s), 760(m), 740(s) cm⁻¹. (s= strong, m=medium, w=weak intensity)

Dichlorobis (1-benzyl-1,2,3-benzotriazole) palladium (II). 1-Benzyl-1,2,3-benzotriazole⁵⁾ (105 mg) in 5 ml of benzene was similarly treated with dichlorobis (benzonitrile) palladium (II) (96 mg) for 5 min to give a pale yellow precipitate (120 mg); mp 250°C decomp.; insoluble in benzene, ethanol, chloroform, and acetone, but slightly soluble in DMSO and DMF.

Found: C, 51.58; H, 4.00; N, 13.61%. Calcd for $C_{26}H_{22}$ - N_6Cl_2Pd : C, 52.41; H, 3.72; N, 14.11%.

IR (KBr): 3080(m), 3050(m), 3000(w), 2940(m), 1615(m), 1595(m), 1495(m), 1480(m), 1455(m), 1330(w), 1310(m), 1300(w), 1245(s), 1165(m), 1140(m), 770(m), 745(s) cm⁻¹.

PMR (60 MHz, in DMSO- d_6); τ 1.8—2.6(multiplet, 4H), 2.65(singlet, 5H), 3.95(singlet, 2H).

Dichlorobis(1-vinyl-1,2,3-benzotriazole) palladium(II). 1-Vinyl-1,2,3-benzotriazole⁶⁾ (150 mg) was similarly treated with dichlorobis(benzonitrile) palladium(II) (190 mg) in 5 ml of benzene to give a pale yellow precipitate (180 mg); mp 265°C decomp.; insoluble in benzene, ethanol, chloroform, and acetone, but slightly soluble in DMSO and DMF.

Found: C, 41.86; H, 3.11; Pd, 23.31%. Calcd for $C_{16}H_{14}$ - N_6Cl_2Pd : C, 41.09; H, 3.02; Pd, 22.75%.

¹⁾ E. M. Burgess, R. Carithers, and L. MuCullagh, *J. Amer. Chem. Soc.*, **90**, 1923 (1968): A. J. Hubert, *J. Chem. Soc.*, *C*, **1969**, 1334: M. Ohashi, K. Tsujimoto, and T. Yonezawa, *Chem. Commun.*, **1970**, 1089.

²⁾ Benzotriazole complexes of mercury were prepared by the reaction of 1*H*-benzotriazole with mercury salts.

E. Müller and H. Meier, Ann. Chem., 716, 11 (1968).

³⁾ J. C. Chien and H. C. Dehm, *Chem. Ind.* (London), **1961**, 745

⁴⁾ The PMR and IR spectra were obtained on a JEOL H-60 NMR Spectrometer and a 215 Hitachi Grating Infrared Spectrophotometer, respectively.

⁵⁾ Prepared by the published method: M. S. Gibson, J. Chem. Soc., 1956, 1076.

⁶⁾ Prepared by the published method: J. Hopff, U. Wyss, and H. Lussi, Helv. Chim. Acta, 43, 135 (1960).

IR (KBr): 3100(m), 2940(w), 1645(s), 1600(m), 1500(m), 1460(s), 1360(m), 1320(m), 1310(m), 1210(s), 1170(m), 1140(m), 1120(m), 960(m), 920(m), 780(m), 760(m), 750(s) cm⁻¹. PMR (in DMSO- d_6); τ 1.5—2.8(multiplet, 5H), 3.8(1H), 4.5(1H).

Chloro $(\pi$ -allyl) (1H-1,2,3-benzotriazole) palladium (II).

Into 183 mg of di- π -allyl- μ , μ' -dichloropalladium(II) in 15 ml of benzene, we stirred 300 mg of 1H-1,2,3-benzotriazole at room temperature. After 10 min, a pale yellow precipitate (250 mg) was filtered off. Recrystallization from chloroform gave yellow prisms; mp 160°C decomp.; soluble in chloroform and DMSO.

Found: C, 36.50; H, 3.30; N, 14.04; Cl, 11.94; Pd, 36.42%. Calcd for $C_9H_{10}N_3ClPd$: C, 35.79; H, 3.34; N, 13.91; Cl, 11.74; Pd, 35.23%.

IR (KBr): 3080(s), 1620(m), 1600(m), 1455(m), 1390(s), 1280(m), 1220(s), 1150(m), 1105(m), 980(w), 960(m), 935(m), 910(m), 815(m), 780(m), 765(m), 740(s) cm⁻¹. PMR (in DMSO- d_6); at 20°C, τ 2.0—2.5(multiplet, 4H), 4.15(quintet, 1H, J=10.0 Hz), 6.2(singlet, broad, 4H); at 70°C; τ 2.0—2.5(multiplet, J=10.0 Hz), 6.2 (doublet, J=10.0 Hz).

Chloro(π -allyl)(1-benzyl-1,2,3-benzotriazole)palladium(II). 1-Benzyl-1,2,3-benzotriazole (210 mg) and di- π -allyl- μ , μ '-di-chlorodipalladium (270 mg) in 3 ml of benzene at room temperature gave a pale yellow precipitate (360 mg). Recrystallization from chloroform gave yellow prisms; mp 125°C (dec.); soluble in chloroform and DMSO.

Found: C, 48.75; H, 3.90; N, 10.71%. Calcd for C₁₆H₁₆-N₂ClPd: C, 49.00; H, 4.11; N, 10.72%.

IR (KBr): 3100(m), 3050(m), 2960(m), 1595(m), 1500(m), 1455(m), 1385(m), 1310(m), 1240(m), 1230(m), 1160(m), 1140(m), 1120(m), 1005(m), 960(m), 950(m), 770(m), 745(s), 725(s), 700(m) cm⁻¹. PMR (in CDCl₃); τ 1.55(multiplet,

1H), 2.6 and 2.7(multiplet and singlet, 8H), 4.15(singlet, 2H), 4.2(multiplet, 1H), 5.85(doublet, 2H, J=7.0 Hz), and 6.85 (doublet, 2H, J=12.0 Hz), (π -allyl: A_2B_2X). PMR (in DMSO- d_6) at 65°C; τ 1.7—2.6(multiplet), 2.65(singlet), 4.0 (singlet), 4.15(quintet, J=10.0 Hz), 6.23(doublet, J=10.0 Hz), (π -allyl: AX_4). At 20°C, the singal at τ 6.23 was a broad singlet.

Chloro(π -allyl) (1-vinyl-1,2,3-benzotriazole) palladium(II). 1-Vinyl-1,2,3-benzotriazole (100 mg) and di- π -allyl- μ , μ '-di-chlorodipalladium(II) (126 mg) in 5 ml of benzene at room temperature gave a white precipitate (190 mg). Recrystallization from chloroform gave pale yellow prisms; mp 140°C (dec.); soluble in chloroform and DMSO.

Found: C, 40.94; H, 4.04; Pd, 32.43%. Calcd for $C_{11}H_{12}$ - N_3ClPd : C, 40.27; H, 3.69; Pd, 32.43%.

IR (KBr): 3105(m), 3060(w), 3040(m), 1650(s), 1600(w), 1500(m), 1465(m), 1365(m), 1330(m), 1310(m), 1300(m), 1270(m), 1205(s), 1195(s), 1165(m), 1135(m), 1110(m), 970(m), 910(m), 795(m), 770(m), 760(m) cm⁻¹. PMR (in CDCl₃): τ 1.6(multiplet, 1H), 2.2—2.8(multiplet, 4H), 3.97-(doublet of doublets, 1H, J_{ac} ⁷⁾=15.0 Hz, J_{ab} =2.0 Hz), 4.2-(multiplet, 1H), 4.63(doublet of doublets, 1H, J_{bc} =12.0 Hz, J_{ab} =2.0 Hz), 5.85(doublet, 2H, J=7.0 Hz), and 6.85(doublet, 2H, J=12.0 Hz), (π -allyl: Λ_2 B₂X). PMR (in DMSO- d_6): at 65°C; τ 4.15(quintet, J=10.0 Hz) and 6.2(singlet, broad).

We wish to thank Dr. M. Ohashi and Mr. K. Tsujimoto for their helpful discussions.

7) 1-Vinyl group:

$$-N$$
 $C = C$
 H_a